. http://www.graduate-school-ce.de/index.php?id=486 http://scicomp.math.uni-augsburg.de/Mitarbeiter/ehemalige/irwin_yousept/CV.html Biografi ini saya sampaikan dalam blog untuk memberikan motivasi kepada para pembaca sekalian (khususnya diri saya pribadi) agar terus menggapai cita-cita tertinggi dalam dunia akademik walau kita harus mengejarnya hingga ke negeri orang. Prof. Dr. Irwin Yousept Research topic Optimal Control of Partial Differential Equations Research interests Optimal Control and Numerical Analysis of PDEs PDE-constrained Optimization in Electromagnetics A Priori and a Posteriori Finite Element Error Estimates Regularization, State-Constraints Contact information Address: Dolivostraße 15 D-64293 Darmstadt Germany Phone: +49 6151 16 - 70946 Fax: +49 6151 16 - 4459 Office: S4|10-313 Email: yousept (at) gsc.tu... Research Group Vera Bommer Curriculum Vitae Curriculum Vitae Name Irwin Yousept Birth date 14.04.1982 Birth place Jakarta Martial status unmarried Academic Education 2002-2005 Diplom in Mathematics (Berlin University of Technology - final grades: 1.0) 2006-2008 Ph.D. in Mathematics (Berlin University of Technology - final grades: summa cum laude) Open Phd Positions Open Phd position Bachelor- und Masterarbeiten Laufende Masterarbeiten Teaching SS13: Optimierung mit partiellen DifferentialgleichungenWS12: Nichtlineare Optimierung Publication in Refereed Journals [16] Ronald H.W. Hoppe and Irwin Yousept: Adaptive edge element approximation of H(curl)-elliptic optimal control problems with control constraints, submitted, 2013 [15] J.C. Delos Reyes and Irwin Yousept: Optimal control of electrorheological fluids through the action of electric fields, submitted, 2013 [14] Irwin Yousept: Optimal control of quasilinear H(curl)-elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51(5), 3624-3651, 2013 [13] Irwin Yousept: Optimal bilinear control of eddy current equations with grad-div regularization and divergence penalization. Journal of Numerical Mathematics, accepted for publication, 2013 [12] Irwin Yousept: Optimal control of Maxwell's equations with regularized state constraints. Computational Optimization and Applications 52(2), 559-581, 2012 [11] Irwin Yousept: Finite element analysis of an optimal control problem in the coefficients of time-harmonic eddy current equations. J. Optim. Theory Appl. 154(3), 879-903, 2012 [10] Fredi Tröltzsch and Irwin Yousept: PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages. ESAIM: M2AN 46, 709-729, 2012 [9] P.-E. Druet; O. Klein; J. Sprekels; F. Tröltzsch; I. YouseptOptimal control of 3D state-constrained induction heating problems with nonlocal radiation effects. SIAM J. Control Optim. 49(4): 1707-1736, 2011 [8] Irwin Yousept: Optimal control of a nonlinear coupled electromagnetic induction heating system with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2(1): 45-77, 2010 [7] Michael Hintermüller and Irwin Yousept: A sensitivity-based extrapolation technique for the numerical solution of state-constrained optimal control problems. ESAIM: COCV 16(3): 503-522, 2010 [6] Christian Meyer and Irwin Yousept: State-constrained optimal control of semilinear elliptic equations with nonlocal radiation interface conditions. SIAM J. Control Optim. 48(2): 734-755, 2009 [5] Christian Meyer and Irwin Yousept: Regularization of state-constrained elliptic optimal control problems with nonlocal radiation interface conditions. Comput. Optim. Appl. 44(2): 183-212, 2009 [4] Juan Carlos Delos Reyes and Irwin Yousept: Regularized state-constrained boundary optimal control of the Navier-Stokes equations. J. Math. Anal. Appl. 356(1): 257-279, 2009 [3] Fredi Tröltzsch and Irwin Yousept: A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. Comput. Optim. Appl. 42(1): 43-66, 2009 [2] Fredi Tröltzsch and Irwin Yousept: Source representation strategy for optimal boundary control problems with state constraints. Journal for Analysis and its Applications 28(2): 189-203, 2009 [1] Michael Hintermüller and Fredi Tröltzsch and Irwin Yousept: Mesh independence of semismooth Newton methods for Lavrentiev-regularized state constrained optimal control problems. Numerische Mathematik 108(4): 571-603, 2008 Proceedings C. Meyer; I. Yousept: State-constrained optimal control problem with radiation interface conditions. Proc. Appl. Math. Mech. DOI: 10.1002/pamm.200700248 J.C. De los Reyes; I. Yousept: Boundary optimal flow control with state constraints. Proc. Appl. Math. Mech. DOI: 10.1002/pamm.200700361 Thesis Vergleich von Lösungsverfahren zur Behandlung elliptischer Optimalsteuerungsprobleme. Diploma Thesis, TU Berlin, 10/2005. Optimal control of partial differential equations involving pointwise state constraints: Regularization and applications. Phd Thesis, TU Berlin, 08/2008. Awards 2005 Dies-Mathematicus-Prize (Best master's thesis of 2005) 2006 Erwin-Stephan-Prize . Sumber Informasi 1 Sumber Informasi 2 Cari informasi lainnya di bawah ini
Tidak ada komentar:
Harap beri komentar yang positif. Oke boss.....
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.